Alternative Enterprise Wearables: Vests, Visors and Hearables

Written BY

Emily Friedman

May 6, 2019

What is the most successful piece of wearable technology in human history? Arguably, it’s the hearing aid. In fact, hearing aids might be considered the original hearables. Yes, I said hearables. Wearables are a broad category of devices – broader than you might think – encompassing not only smartwatches and smart eyewear but also embeddables, hearables and ingestables—any connected device that can be worn somewhere on or inside the body. We can extrapolate this to define an enterprise wearable as any electronic device that a worker wears (or ingests) to improve his or her performance and safety in some way. Then, there are items of clothing and gear equipped with today’s advanced sensors. In many industries, these wearables are a worker’s last line of defense against injury in the workplace. Read on for some alternative enterprise wearables – non-watch and non-eyeglass form factors – under development or currently available for enterprise:

Smart Suspenders and Other Accessories

Amazon has over 100,000 robots in its warehouses. Funnily enough, as efficient as these robots are at moving containers of items to help human pickers fulfill millions of online orders, they (or rather their on-board sensors) aren’t all that great at recognizing their human coworkers. In human-robot workplaces, most accidents occur during non-routine actions. At Amazon, robots operate within a designated area or enclosure, but if one breaks down or drops an item, a human employee must enter that space and that’s when a collision is most likely to occur.

Over 2018, Amazon introduced the Robotic Tech Vest (RTV) to more than 25 facilities. Though called a vest, the RTV is more like a utility belt with suspenders that sends a signal to the robots when a human is nearby. The RTV can actually signal the wearer’s presence from farther away than the point at which the robot’s built-in sensor tech can recognize a human being, adding an extra layer of safety to the robots’ ability to scan for obstacles. This also gives the robot more time to slow down and reroute so as to avoid a collision. Amazon has reported that in 2018 the RTVs alerted robots to avoid human workers over a million times.

Other items of clothing and gear can be decked out with sensors to gather information, improve safety, and improve productivity across the workforce. There are heated jackets and cooling vests for extreme work environments, even self-charging work boots that track fatigue and provide lighting for jobs in low light. Such wearables could also be used for geofencing, alerting employees upon entering a restricted or unsafe zone. Earlier this month, Fraunhofer presented a prototype of another smart vest called the ErgoJack, a wearable soft robotics system with real-time motion detection and analysis. Designed for workers who lift heavy objects or spend long hours bent over a component, the ErgoJack can distinguish between ergonomic and unergonomic movements and alert the wearer in real time to prevent back pain and premature spine wear.

On the High Seas

Working (and vacationing) on the open ocean comes with risks, especially in treacherous conditions far from the shore with limited visibility should someone get lost at sea. There have been a number of IoT projects and products aimed at improving safety at sea, including the EU project LYNCEUS2MARKET (L2M) and In:Range by ScanReach. Launched in 2015 by a team of cruise ship owners and operators, ship builders, maritime equipment manufacturers, industry associations, and tech companies; L2M came up with several wearable devices, including a life jacket that locates passengers in an emergency situation.

During a maritime emergency, there is often limited personnel available to assist. With In:Range, crew members on a vessel or offshore installation wear low-powered smart wristbands that tether users to sensors located throughout and outside the ship. This keeps the crew accounted for, allowing people from fleet management, coastal services, rescue departments, insurance companies, etc. to locate them in real time and, if necessary, intervene with a targeted rescue operation. In addition to real-time location, In:Range can also act as a safety alarm, means of area access control, and man-overboard device. To protect sailors’ privacy, the wearer’s location is not tracked until an alarm is triggered by motions indicating stress or by the wearer herself.

Personal Blinkers

As I sit here writing this, despite having classical music blasting in my noise cancelling headphones, I’m distracted by the numerous phone conversations taking place in my office and especially by one coworker who paces while on the phone (you know who you are). This is why I’m rooting for a recent prototype developed by Panasonic’s design studio Future Life Factory. Wear Space – a curved, flexible strip that wraps around the back of the head and extends like a shield for your peripheral vision – is designed to help people focus by limiting noise and other distractions in busy work spaces and open-plan offices. Essentially, these “wearable blinkers” block off the wearer from his immediate surroundings, providing instant personal space. Fitted with noise-cancelling headphones to block out ambient sound, the Wear Space can also be adjusted according to the user’s desired level of concentration. As open office plans grow in popularity and remote working becomes a norm, a device like Wear Space could do very well. Panasonic hopes the technology will be able to cut users’ horizontal field of view by around 60%.

Did you know that noise can harm you at work? Each year according to OSHA, 22 million workers are exposed to potentially damaging noise on the job, so UK startup EAVE developed hearable tech to protect people’s hearing in the workplace. Consisting of a headset and cloud-based noise monitoring platform, the technology not only protects the wearer from excessive noise in loud industrial environments but also gathers data about onsite noise levels which is used to create a heat map of noise in the workplace. The system, launched earlier this year, is meant to prevent noise-induced hearing loss, tinnitus and other hearing-related conditions. In addition, it creates an audit trail for the organization in case of future occupational hearing loss claims.

In and Behind the Ear

According to IDC, the wearables category is expanding to include hearables and the enterprise hearables market in particular is growing, with solutions aimed at offices/shops as well as more industrial environments. A recent Bloomberg Businessweek article titled “The Future of Wearable Tech is Called a Hearing Aid” is all about Livio AI, a new product from longtime hearing aid maker Starkey. Described as “a hearing aid for people who don’t need hearing aids,” Livio AI are barely visible hearables that use tiny sensors plus artificial intelligence (AI) to selectively filter noise, track various biometrics (steps, plus soon heart rate, blood pressure and more vitals), translate 27 languages near instantaneously, and detect falls. With accompanying app Thrive, Livio AI wearers can also choose to amplify specific sound sources (ex. a business colleague sitting across from you in a busy restaurant). Starkey is pitching the platform to doctors and patients, with an expected price of around $2,500 to $3,000.

It’s not difficult to imagine how a discreet in-ear computing device could improve communication (enhance listening, eliminate language barriers) and increase safety (health tracking, equilibrium/fall detection) in the workplace. The ear is actually superior to the wrist as an ideal location for sensors, which explains why a number of smart headphone and hearable startups have been popping up; but why should augmented hearing benefit consumers and not workers, as well? Besides outputting great quality sound, hearables filter out sounds, provide more accurate vital sign data (heart rate, body temp, pulse oximetry, etc.) and might be used for biometric personal identification in secure workplaces. In fact, the NEC recently announced hearable technology that uses sound waves to identify someone based on the size and shape of that person’s ear. More invisible than a pair of smart glasses, hearables could also provide workers with instant, hands-free access to information via voice commands.

You may have heard of the Smart Cap; well, startups Bodytrak and Canaria have developed smaller hearable devices that, like the Smart Cap, monitor occupational fatigue. According to studies, workers suffering from fatigue are almost three times more likely to put themselves or a colleague in danger. Bodytrak’s non-invasive, in-ear device measures a worker’s core body temperature, heart rate (a great indicator of cognitive fatigue), V02 and motion. This data is then sent to a cloud-based analytics platform that provides early warnings to at-risk workers via the hearable. Canaria’s technology is worn behind the ear, next to the skin. It monitors blood oxygen levels and heart rate, can detect harmful gases, and alerts wearers when it’s time to take a mandatory break. Both hearables might be used by workers in harsh, remote environments (ex. a building site in wintertime), factory employees working extended hours during peak season, laborers maneuvering heavy machinery, even nurses with back-to-back shifts.

Image source: Panasonic

The Enterprise Wearable Technology Summit (EWTS) is an annual conference dedicated to the use of wearable technology for business and industrial applications. As the leading event for enterprise wearables, EWTS is where enterprises go to innovate with the latest in wearable tech, including heads-up displays, AR/VR/MR, body- and wrist-worn devices, and even exoskeletons. The 6th annual EWTS will be held September 17-19, 2019 in Dallas, TX. More details, including agenda and early confirmed speakers, to come on the conference website.

Further Reading
5 VR Gloves You Can Buy (or Pre-order) Today
April 16, 2024
New Questions Arise from XR End Users on the Factory Floor
April 16, 2024
Factory workers' questions indicate growing interest and acceptance of XR in manufacturing and beyond.